Hot Line
1300 GO POLY (46 7659)
E-mail Address
contact@polysynthesis.au
Our Location
2/659 Boundary Rd, Darra
QLD 4076, Australia
Plastic welding, much like its metal counterpart, refers to the process of joining two pieces of plastic together. But not all plastics are created equal, especially when it comes to their weldability. It’s imperative to know which plastics can be welded and which can’t. Choosing a non-weldable plastic for an application that requires welding can lead to product failures, increased costs, and wasted effort. So, how do you identify a weldable plastic?
Before diving into weldability, it’s crucial to understand the two primary categories of plastics:
Thermosets: Once cured or hardened, these plastics can’t be remelted or reshaped. Examples include Bakelite, Melamine, and Epoxy Resins. Thermosets are generally non-weldable.
The rule of thumb when welding plastics is: “like welds like.” This means that the plastic to be welded and the welding rod (filler material) should be of the same or very similar chemical composition. If they aren’t chemically compatible, the bond created during welding will be weak or non-existent.
For successful plastic welding, the plastic needs to have a surface energy equal to or greater than the surface tension of the welding rod. If the plastic has low surface energy, proper adhesion and a strong bond will be challenging to achieve.
Melting Temperature: Weldable plastics have specific melting temperatures. If a plastic’s melting point is too high or too low, it might not be suitable for conventional welding methods.
Flow Rate: The rate at which a plastic flows when melted can determine its weldability. Plastics with similar flow rates will bond better.
Performing a simple welding test is often the best way to determine a plastic’s weldability. Using a small sample of the plastic and the appropriate welding rod, try welding the two together. If the bond is strong and the weld seam is consistent, the plastic is likely weldable.
Manufacturers often provide detailed data sheets with their plastics, outlining various properties, including weldability. This information can offer valuable insights and save time in the identification process.
Several welding techniques can be used based on the type of plastic:
Hot Gas Welding: Suitable for thermoplastics, it uses a jet of hot air or inert gas to melt both the substrate and the welding rod.
Ultrasonic Welding: It uses high-frequency ultrasonic acoustic vibrations to weld plastics. Ideal for rigid thermoplastics.
Spin Welding: Ideal for circular thermoplastic parts. The friction caused by rotational movement generates heat, welding the parts together.
Laser Welding: It uses laser beams to join thermoplastics. The plastics need to have specific optical properties for this method to be effective.
Even if a plastic seems weldable, post-weld testing is crucial. Techniques like non-destructive testing (NDT) can be employed to check the quality of the welds. Any inconsistencies or weak bonds can indicate that the plastic might not be ideal for welding.
When in doubt, consult with plastic welding experts. They can provide insights based on their experiences and might even suggest alternative bonding methods if welding is not feasible.
Even if a plastic is weldable, contaminants like oils, dirt, or other residues can affect the welding process’s success. Always ensure that the plastics to be welded are clean and free from contaminants.
Conclusion:
Identifying a weldable plastic is a combination of understanding the material’s inherent properties and practical testing. It’s a systematic process where knowledge of the plastic’s type, its chemical makeup, and its physical properties play a significant role. By following a structured approach and harnessing the plethora of resources available, from data sheets to expert guidance, one can successfully determine the weldability of a given plastic. Ensuring that a plastic is weldable not only results in a durable and robust bond but also paves the way for product reliability, durability, and longevity.
1300 GO POLY (46 7659)
contact@polysynthesis.au
2/659 Boundary Rd, Darra
QLD 4076, Australia
At Poly Synthesis, our team offers extensive knowledge in engineering plastics and fabrication.
With years of experience serving various industries, we’re adept at tackling the distinct challenges your project may present.
2/659 Boundary Rd, Darra QLD
4076, Australia
If you have any urgent questions or requirements, feel free to get in contact with our team:
Copyright © 2023 Poly Synthesis Pty Ltd. All Rights Reserved.